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Abstract 

The free-radical polymerization of hydrophobic monomers in emulsions is an industrially 

and scientifically useful means of producing polymers. Resulting products from 

traditional emulsion polymerizations typically have quite wide distributions of molecular 

weights and even relatively simple architectures such as A−B blocks are impossible to 

synthesize. Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization 

techniques allow unprecedented control over the molecular architecture of polymers 

made by free-radical polymerization. RAFT/emulsion polymerizations have considerable 

technical potential, for example to “tailor-make” material properties or to eliminate added 

surfactant from surface-coating formulations. However, considerable difficulties have 

been experienced in using RAFT in emulsion polymerization systems. 

The successful use of the living radical polymerization technique RAFT is first 

described for the seeded emulsion polymerization of styrene using the benzyl-stabilized 

RAFT agent 2-phenylprop-2-yl phenyldithioacetate (PPPDTA). RAFT-mediated 

polymerization is seen to give both control over the molecular weight and a narrow 

polydispersity product. The presence of RAFT agent in the monomer droplets at the 

commencement of polymerization is postulated to be the cause of previous 

RAFT/emulsion attempts being unsuccessful. The use of γ-initiation of RAFT/emulsion 

systems is also described; the relaxation behavior on removal from the radiation source 

gives information about radical loss processes. A reduction in the rate of polymerization 

and long inhibition periods are observed that are dependent on the concentration of RAFT 

agent in both chemically- and γ-initiated systems. The characteristic times for 

γ-relaxations are also seen to be much shorter in the presence of RAFT agents. 

Chain-length dependent termination is shown to play an important role in RAFT-

mediated emulsion polymerization, with the RAFT agent changing the length of the 

propagating radical as a function of conversion. At low conversion, the termination rate 

coefficients are higher than in the absence of RAFT and zero-one kinetics is applicable to 

 iii
 



 Abstract
 

the system; at high conversion, termination is slower and pseudo-bulk kinetics are more 

appropriate. The observed increase in the number of radicals per particle as 

polymerization progresses is consistent with the influence of chain-length dependent 

termination, as is the observed increase in the timescale for relaxation with the increasing 

length of the dormant chains. 

A method is described by which a suitable average rate coefficient for termination 

may be selected for the Smith–Ewart population balance equations. In some situations, it 

is possible to easily calculate the Smith–Ewart parameter for termination from the chain-

length distribution of radicals analytically, while various numerical techniques (including 

integration and Monte Carlo simulation) may be used more generally. 

RAFT/emulsion systems are shown to have greatly reduced compartmentalization 

compared to their non-RAFT analogues. The RAFT-induced exit of radicals was 

estimated to lead to a ~400-fold increase in the rate coefficient for radical exit from the 

particles, which is consistent with the rapid relaxations observed in γ-relaxation 

experiments. 

The inhibition period of RAFT/emulsion systems is shown to be adequately 

modeled by zero-one kinetics, once the RAFT-induced exit of radicals, the exit of the 

re-initiating group from the particle, and the specificity of the re-initiating group to the 

initial RAFT agent are included. 

With the models developed here for RAFT/emulsion systems, strategies for 

improving the performance of reactions are developed, including the use of lower-activity 

RAFT agents to improve the compartmentalization of the system. The use of oligomeric 

adducts to the initial RAFT agent are shown to improve the rate of polymerization by 

reducing the termination rate coefficients in the system. 
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Glossary of Symbols and Abbreviations 

symbol definition typical units 

a root-mean-square end-to-end distance per square root of the 
number of monomer units in the polymer chain 

nm 

A ratio between the rate of conversion and n– (in analysis of 
Interval II data) 

 

A ratio between the pseudo-first-order rate of conversion (i.e. 
d[−ln(1−x)]/dt) and n– (in analysis of Interval III data) 

 

AA acrylic acid (monomer)  

ATRP atom-transfer radical polymerization  

BA butyl acrylate (monomer)  

c Smith–Ewart pseudo-first-order rate coefficient for the 
(second-order) annihilation of radicals 

s−1 

c(t′′) abbreviation of c(t, t′, t′′) s−1 

c(t, t′, t′′) parameter c (as above) in a doubly-distinguished particle 
N2′′ with a dependence on t, t′, and t′′. 

s−1 

c0(t) normalization of c–(t) s−1 

cF contraction factor in dilatometry calculations cm3 g−1 

crd contribution of reaction-diffusion to c  s−1 

ctrM contribution of transfer to monomer to c  s−1 

c1L pseudo-first-order rate coefficient for the termination of a 
monomeric radical with a long radical 

s−1 

cSL pseudo-first-order rate coefficient for the termination of a 
short radical with a long radical 

s−1 

c–(t)  instantaneous value of c, averaged over the chain-length 
distribution of all radicals present in the system 

s−1 

c* concentration of polymer where chains overlap mol dm–3 

c** concentration of polymer where chains are entangled mol dm–3 

C1 normalization for the time-evolution of N2′′ species  

Cw concentration of monomer in the aqueous phase mol dm–3 

CR
w  concentration of the species R in the aqueous phase mol dm–3 

Csat
w   saturation concentration of monomer in the aqueous phase mol dm–3 

 xviii
 



 Glossary of Symbols and Abbreviations
 

Cp concentration of monomer in the particles mol dm–3 

CR
p   concentration of the species R in the particle phase mol dm–3 

Csat
p   saturation concentration of monomer in the particles mol dm–3 

Ctr  transfer constant for a polymeric radical with an RTA, 
Ctr = ktr,RAFT/kp 

 

C−tr transfer constant for an R  radical with an RTA, 
C−tr = k−tr,RAFT/kR

add  
 

Cz concentration of dormant z-meric radicals in a particle mol dm–3 

CHDF capillary hydrodynamic fractionation (method for 
determining particle size) 

 

CLD chain length dependent  

dm density of monomer g cm–3 

dp density of polymer g cm–3 

D dormant chain  

Di dormant chain of length i  

DP dormant chain with a polymeric leaving group (i.e. dormant 
polymeric chain) 

 

DR dormant species with an R group (i.e. initial RAFT agent)  

D1 diffusion coefficient of the monomeric radical in a particle cm2 s–1 

Di(N) instantaneous chain-length distribution of the dormant 
chains in a particle with i radicals 

 

Dw diffusion coefficient of the monomeric radical in water cm2 s–1 

Dij mutual diffusion coefficient for an i-meric and j-meric chain cm2 s–1 

Drd diffusion coefficient for the chain end for reaction-diffusion cm2 s–1 

D 
i  abbreviation for Dcom

i   cm2 s–1 

Dcom
i   center-of-mass diffusion coefficient of an i-mer  cm2 s–1 

DR diffusion coefficient of the species R (or R ) in water cm2 s–1 

DR
w  diffusion coefficient of the species R (or R ) in water cm2 s–1 

DIR mutual diffusion coefficient for non-identical initiator-
derived radicals for “hetero-termination” 

cm2 s–1 

DII mutual diffusion coefficient for identical initiator-derived 
radicals for “homo-termination” 

cm2 s–1 

 xix
 



 Glossary of Symbols and Abbreviations
 

DRI differential refractive index; commonly used response from 
GPC instrument 

 

E  exited monomeric radical  

[E] concentration of exited monomeric radicals mol dm–3 

ESR electron spin resonance (method for identifying and 
quantifying the radicals present ) 

 

f initiator efficiency in emulsion polymerization, calculated 
from Maxwell−Morrison theory for entry 

 

fll fraction of all termination reactions that are long−long  

fzl fraction of all termination reactions that are z-meric−long  

Gi(N) instantaneous chain-length distribution of the radicals in a 
particle with i radicals 

 

GPC gel permeation chromatography, also known as size 
exclusion chromatography; method for determining the 
molecular weight distribution 

 

ht height of the meniscus in the capillary at any given time, 
relative to the initial height 

µm 

h100 height of the meniscus in the capillary relative to the initial 
height at 100% conversion 

µm 

i integer (e.g. for chain length or number of radicals in a 
particle) 

 

I–I undecomposed initiator molecule  

I initiator molecule  

I• decomposed initiator fragment  

IMi
• polymeric or oligomeric radical with degree of 

polymerization i 
 

j integer (e.g. for chain length)  

jcrit critical degree of polymerization for chain collapse  

k (as a subscript or superscript) integer (e.g. for chain length)  

k Smith–Ewart pseudo-first-order rate coefficient for the 
desorption of radicals from particles 

s–1 

kaz second-order rate coefficient for the adsorption of a z-meric 
radical onto the surface of a particle from the aqueous phase 

dm3 mol–1 s–1 

 xx
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kads second-order rate coefficient for the adsorption of a 
monomeric radical onto the surface of a particle from the 
aqueous phase 

dm3 mol–1 s–1 

kR
add  second-order rate coefficient for the addition of the RAFT 

re-initiating radical (R ) to monomer 
dm3 mol–1 s–1 

kcr pseudo-first-order rate coefficient for radical exit assuming 
the complete re-entry of  exited radicals 

s–1 

kct pseudo-first-order rate coefficient for radical exit assuming 
the complete aqueous-phase termination of radicals 

s–1 

kdM first-order rate coefficient for the desorption of a monomeric 
radical from a particle into the aqueous phase 

s–1 

kdz first-order rate coefficient for the desorption of a z-meric 
radical from a particle into the aqueous phase 

s–1 

kd first-order rate coefficient for the dissociation of initiator s–1 

kdR first-order rate coefficient for the desorption of an R  radical 
from a particle into the aqueous phase 

s–1 

kexit first-order rate coefficient for the exit of radicals from a 
particle 

s−1 

kz
e  second-order rate coefficient for the entry of a z-meric 

radical into a particle 
dm3 mol–1 s–1 

kR
e   second-order rate coefficient for the entry of a exited R  

radical into a particle 
dm3 mol–1 s–1 

kp second-order rate coefficient for propagation dm3 mol–1 s–1 

kpI second-order rate coefficient for addition of the initiator-
fragment, I , to monomer 

dm3 mol–1 s–1 

ki
p  second-order rate coefficient for propagation of a i-mer dm3 mol–1 s–1 

ki
p,aq  second-order rate coefficient for aqueous phase propagation 

of a i-mer 
dm3 mol–1 s–1 

kt second-order rate coefficient for the termination of radicals 
in the particles, usually meaning average rate coefficient 〈kt〉 

dm3 mol–1 s–1 

〈kt〉 average second-order rate coefficient for the termination of 
radicals in the particles; average is over distribution of 
radicals 

dm3 mol–1 s–1 

kt,aq second-order rate coefficient for radical termination in the 
aqueous phase 

dm3 mol–1 s–1 
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kR
t,aq second-order rate coefficient for radical termination between 

two non-identical initiator-derived radicals in the aqueous 
phase 

dm3 mol–1 s–1 

kij
t  second-order rate coefficient for radical termination between 

an i-meric radical and a j-meric radical 
dm3 mol–1 s–1 

klong-long
t  second-order rate coefficient for radical termination between 

two long radicals 
dm3 mol–1 s–1 

kshort-long
t  second-order rate coefficient for radical termination between 

a short radical and a long radical 
dm3 mol–1 s–1 

kshort-short
t  second-order rate coefficient for radical termination between 

two short radicals 
dm3 mol–1 s–1 

ktr second-order rate coefficient for the transfer to monomer dm3 mol–1 s–1 

ktr,D second-order rate coefficient for the transfer to a dormant 
species 

dm3 mol–1 s–1 

ktr,RAFT second-order rate coefficient for the transfer of radical 
activity to a dormant RAFT species 

dm3 mol–1 s–1 

k1
tr,RAFT  second-order rate coefficient for the transfer of radical 

activity to the initial RAFT species 
dm3 mol–1 s–1 

k−tr,RAFT second-order rate coefficient for the transfer of radical 
activity from an R  radical to a dormant RAFT species 

dm3 mol–1 s–1 

long indicates that the length of the species is such that 
entanglement is important and diffusion is slow (t 40) 

 

L indicates that the length of the species is “long”  

m length of a radical chain in zero-one-two theory  

mmon mass of monomer g 

mp mass of polymer g 

M monomer unit  

M• monomeric radical  

M0 molecular mass of a monomer unit  

—
Mn number-average molecular weight  
—
Mpred

n  predicted number-average molecular weight  
—
Mw weight-average molecular weight  

MMA methyl methacrylate (monomer)  

MWD molecular weight distribution  
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n length of a radical chain in zero-one-two theory  

nD number of D species in a particle  

nf
I final amount of initiator in the system mol 

ni
I initial amount of initiator in the system mol 

nI number of initiator-derived radicals denoted “i-mers” for the 
“homo-termination” reaction 

 

nR number of initiator-derived radicals not denoted “i-mers” for 
the “hetero-termination” reaction 

 

nD
k  number of Dk species in the particle  

n0
m amount of monomer per unit volume of aqueous phase mol dm−3 

nRAFT number of moles of RAFT agent added mol 

nZX number of dormant z-meric species (ZX) per particle  

n– average number of radicals per particle  

n–i initial n– in a system (steady state before relaxation)  

n–sp n– in a system with only spontaneous initiation  

n2––
 average of the square of the number of radicals per particle  

N 
0  number concentration of particles containing no radicals dm–3 

Np
1  number concentration of particles containing one polymeric 

radical 
dm–3 

NR
1   number concentration of particles containing one R  radical dm–3 

N2′′(t′′) abbreviation of N2′′(t, t′, t′′), the population of doubly 
distinguished particles, normalized so that ∑Ni = 1 

 

NA Avogadro constant mol–1 

Nc number concentration of particles in the aqueous phase dm–3 

Ni population of particles with i polymeric radicals, normalized 
so that ∑Ni = 1 

 

Ni number concentration of particles with i polymeric radicals 
(normalized such that ∑Ni = Nc)  

dm–3 

NMP nitroxide-mediated polymerization  

NMR nuclear magnetic resonance (method for identifying the 
chemical species present, esp. for organic compounds) 

 

pij probability that an i-meric radical will terminate with a 
j-meric radical in an encounter 
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P  polymeric radical  

Pj probability of an entering radical consuming at least j 
monomer units before termination 

 

Pj(t) probability of an entering radical consuming at least j 
monomer units before termination, as measured at a given 
time t (hence wp) since the system reached a (quasi-) steady 
state 

 

Pn polymeric chain with degree of polymerization n  

Pn
• polymeric radical with degree of polymerization n  

P(A) probability of event “A” occurring (e.g. P(P  + M) is the 
probability of the propagation reaction occurring) 

 

P(exit-M) probability of a M  species exiting a particle  

P(exit-Z) probability of a z-meric radical exiting a particle  

PD polydispersity of the polymer sample PD = 
—
Mw/

—
Mn  

PLP pulse laser polymerization experiment (to determine kp, kt 
etc.) 

 

PPPDTA RAFT agent 2-phenylprop-2-yl phenyldithioacetate: 
Ph−C(CH3)2−S−C(=S)−CH2−Ph 

 

r radius of a particles nm 

rc radius of the capillary in the dilatometry experiment mm 

rI interaction radius of radicals denoted “i-mers” for the 
“homo-termination” reaction 

 

rR interaction radius of radicals denoted “i-mers” for the 
“hetero-termination” reaction 

 

rs swollen radius of the particles nm 

ru unswollen radius of the particles nm 

R leaving group (re-initiating group) of the RAFT agent  

R  re-initiating radical  

R  generic radical species (Maxwell−Morrison theory)  

R2 measure of goodness of fit, esp. for linear fits  

RI+I
coll rate of collision of identical radicals leading to the “homo-

termination” reaction, IMi
• + IMi

•  
mol dm−3 s−1 

RI+R
coll rate of collision of non-identical radicals leading to the 

“hetero-termination” reaction, IMi
• + R•  

mol dm−3 s−1 

 xxiv
 



 Glossary of Symbols and Abbreviations
 

RI+I
rxn rate of “homo-termination”, IMi

• + R•  mol dm−3 s−1 

RI+R
rxn  rate of “hetero-termination”, IMi

• + R•  mol dm−3 s−1 

Rp rate of polymerization mol dm−3 s−1 

RAFT reversible addition-fragmentation chain transfer  

RTA reversible transfer agent, e.g. a RAFT agent  

short indicates that the length of the species is such that 
entanglement is unimportant and diffusion is fast (d 10) 

 

Sty styrene (monomer)  

SEC size exclusion chromatography, see GPC  

t time during a reaction, measured either from when the 
initiator was added (assuming no inhibition) or from when 
the system was removed from the γ-source 

s 

t time since the reaction reached a (quasi-) steady state (in the 
case of zero-one-two theory) 

s 

t′ time for which a distinguished radical grew in a particle with 
one radical 

s 

t′′ time that the two distinguished radicals coexist s 

tz time adjustment to account for the entering radical having 
non-zero length (equivalent to the age of a z-meric radical 
were it to grow within the particle) 

s 

T temperature K or °C 

TR total concentration of radical species in the aqueous phase 
able to undergo termination reactions 

mol dm–3 

THF tetrahydrofuran, the solvent used for GPC molecular weight 
determination 

 

Ui uniform random deviate (number) on the interval [0,1]  

UV-Vis ultra-violet/visible spectroscopy (method for quantifying the 
amount of a chromophore present) 

 

V0 initial volume of the reaction mixture in the dilatometer dm3 

Vaq volume of the aqueous phase in the reactor dm3 

Vm volume of monomer used cm3 

Vs swollen volume of a particle dm3 

Vt volume of the reaction mixture in the dilatometer at a time t, 
calculated from the height of the meniscus ht 

dm3 

 xxv
 



 Glossary of Symbols and Abbreviations
 

wp weight fraction of polymer in the system  

x fractional conversion of monomer to polymer  

xII/III conversion at which monomer droplets disappear (Interval II 
to Interval III transition) 

 

X chemical symbol representing the dormant end cap on a 
chain (in the case of RAFT, the thiocarbonylthio group) 

 

Xd length of the dormant chains in the system  

X
 –

n,d number average degree of polymerization   

z critical degree of polymerization for a chain to become 
surface active 

 

Z activating group of the RAFT agent  

ZX dormant z-meric chain −IMz−X  

α fate parameter for exited radicals on [−1,1]  

β exponent for the chain-length dependence of the diffusion of 
polymeric species (in general, may be a function of wp, 
hence of t); physical values are β ∈ [0,2] 

 

χR mole fraction of the species R  

∆i CLD sum of the frequency of all events that may occur to an 
i-meric radical in a particle  

 

∆
 –

m average change in the number of monomer units in a particle 
as a result of a radical entering the particle 

 

δtmax maximum deviation from the current time which is 
permissible in a Monte Carlo simulation 

s 

γ γ-radiation from a 60Co radioactive source  

Γ(b, z) incomplete gamma function, Γ(b, z) = ∫∞z  tb−1e−t dt   

ρ Smith–Ewart pseudo-first-order rate coefficient for the entry 
of radicals into particles 

s–1 

ρi pseudo-first-order rate coefficient for the entry of initiator 
derived radicals into a particle 

s–1 

ρm density of monomer g cm−3 

ρp density of polymer g cm−3 

ρspon pseudo-first-order rate coefficient for the entry of 
spontaneously generated radicals into a particle, sometimes 
denoted ρthermal 

s–1 
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ρt pseudo-first-order rate coefficient for the entry of all radicals 
into a particle 

s–1 

σ interaction radius for the reaction of two radicals nm 

τ average time-step of a process s 

% w/w percentage contents of a material on a weight-in-weight 
basis 

 

[a,b] interval described by x where a ≤ x ≤ b  

{a, b, …} set containing elements a, b, etc.  

≈ is approximately equal to  

à is much greater than  

v is not much greater than  

á is much less than  

f is not much less than  

∏
i=a

b
 f(i)  product of f(i) for all i ∈ [a,b], where a and b are integers  

∑
i=a

b
 f(i)  sum of f(i) for all i ∈ [a,b], where a and b are integers  
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