

Stuart W. Prescott, ** Christopher M. Fellows, * Robert F. Considine, * Calum J. Drummond* and Robert G. Gilbert* * Key Centre for Polymer Colloids, School of Chemistry, University of Sydney NSW 2006, Australia

* CSIRO Molecular Science, Private Bag 10, Clayton South VIC 3169, Australia

- to directly measure the forces between a polymer colloid and various substrates
- to observe the influence of surface modifications on surface interactions

Motivation

- polymer colloids widely used in paints and adhesives
- adhesive interactions not understood

Autline of Poster

20 um

- 1. synthesise large polymer colloid particles
- 2. attach to an Atomic Force Microscope cantilever
- 3. measure forces using the AFM
- 4. explain interactions in terms of intermolecular forces

2 **Preparation of Colloid Probe for AFM**

- individual HPC/PS particles were picked up using a micromanipulator under an optical microscope
- particles were glued to AFM cantilever using Epikote[™] 1004 resin (on a hot-stage) or Araldite[™] at room temperature

Optical and scanning electron micrographs of the particles mounted on the AFM cantilevers.

Force Measurement 8

- interactions of HPC/PS particles with mica, silica & graphite measured
- colloid probe pushed against substrate (in KNO₃ solution) then pulled off
- scan rate 1 Hz, scan size 600 nm, approach to surface 400nm

Secondary Adhesion

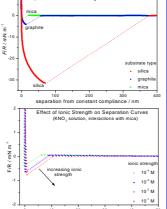
	 typical force curve shown on left one chain remains attached to substrate and pulls off later (schematic below) secondary adhesion provides direct evidence of HPC-substrate interactions
4 1° adhesion 2° adhesion separation 0 50 100 15 separation from constant compliance / nm	 this phenomenon has also observed in other systems (polymer solutions)¹

Approach and Separation

particle separates except for one chair

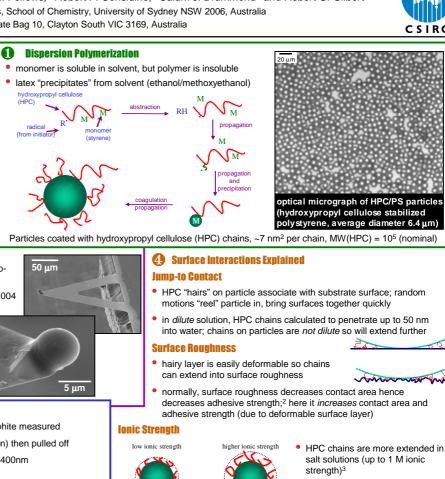
esive interact hold particle

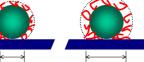
attractive particle-substrate forces cause jump-to contact (starts between 12 nm and 100 nm)


chain easil elongated

adhesion of particle to substrate gives an adhesive hysteresis - approach and separation curves different

observed adhesive interaction strength: silica > graphite > mica




in most other systems, interaction distances shorter at higher ionic strength

adhesive peal

overcome



- elongated HPC chains touch surface over larger surface area, giving stronger adhesion to surface

Summary of Observations

- observed interactions are unlike those of pure polystyrene or pure HPC
- direct evidence for hairy-layer-substrate interactions was observed:
 - secondary adhesion of HPC chain and surface
 - increased ionic strength gives greater adhesion
- adhesive strength was increased by a rough substrate surface and an easily deformable surface modification on the particle
- particle core is also involved in adhesion e.g. with graphite; particle core should not be deformable at these applied loads4

Conclusions

- HPC/PS particles are "compatibilized"
 - they adhere to both hydrophobic and hydrophilic surfaces
 - their properties are a combination of the uncoated polymer (polystyrene) and the coating (hydroxypropyl cellulose); both particle core and hairy layer are significant in interactions
- interaction strength can be varied by roughening surface or elongating surface

hairs References

- Senden, T. J.; Dimeglio, J. M.; Aurov, P. European Phys. J. B 1998, 3, 211-216.
- Schaefer, D. M.; Carpenter, M.; Gady, B.; Reifenberger, R.; Demejo, J. 211210.
 Schaefer, D. M.; Carpenter, M.; Gady, B.; Reifenberger, R.; Demejo, L. P.; Rimai, D. S. J. Adhesion Sci. Technol. 1995, 9, 1049-1062.
- Suto, S.; Nishibori, W.; Kudo, K.; Karasawa, M. J. Appl. Polym. Sci. 1989, 37, 737-749 Biggs, S.; Spinks, G. J. Adhesion Sci. Technol. 1998, 12, 461-478. 4.

Acknowledgements

- A/Prof. G.G. Warr, Dr Jamie Schulz and Mr Gordon Burns (University of Sydney) for access to the AFM and light microscopes as well as many enlightening discussions
- Mr Tony Romeo (Key Centre for Microscopy and Microanalysis) for assistance with SEM work
- The Key Centre for Polymer Colloids is established and supported under the Australian Research Council's Research Centres Programme