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Objectives
• how does RAFT alter emulsion polymerization mechanisms (e.g. 

particle growth, radical entry, radical exit)?

• can traditional emulsion polymerization tools (e.g. zero-one kinetics, 
γ-relaxations) be used on RAFT/emulsion systems?

Motivations & Background
• RAFT offers ways to create block and star polymers easily; emulsion 

polymerization allows fast polymerization rates and high molecular 
weights

• previous studies with [RAFT] = 16 mM have reported 
difficulties/unusual behavior [1]:

low conversion n is less than non-RAFT system

an increase in n is evident throughout the experiment

an inhibition period that decreases with increasing [initiator],
but is not observed in the equivalent bulk system.

Outline of Poster
1. theory: development of a Monte Carlo model

2. numerical experiments: how RAFT agents affect the kinetics

3. discussion: chain length dependent kinetics and RAFT systems
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Theory of Chain-Length Dependent Reactions
• termination is a chain length dependent reaction, but in RAFT, the length of the radical can change:

Monte Carlo Simulations

• evolution equations intractable (distribution of radical lengths and dormant chain lengths): try Monte Carlo 

• consider a particle with a pre-existing radical (and 102 to 105 dormant chains)

• dormant chains length, Xd, same as pre-existing radical

• use a random number U1 ∈ [0,1] to choose which event occurred:

• and increment the time of the molecules involved [2]:

• lifetime of radical (in terms of number of propagation steps) calculated
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Implications for Experimental Design
• longer-chain dormant species lead to an increased lifetime for the 

radicals – use of an oligomeric RAFT-adduct is an advantage

• [RAFT] has no direct effect on the lifetime of the radicals in the 
particles

• [RAFT] has an indirect effect by prolonging retardation caused by 
short chains

RAFT Simulation
• Monte Carlo models provide significant insights into the importance 

of the different processes (propagation, transfer to dormant and
termination)

• CLD kinetics must be considered
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Particle Growth Kinetics
• zero-one kinetics may be appropriate for the initial stages of the 

experiment but are unlikely to be applicable thereafter

• pseudo-bulk kinetics may be appropriate at later stages 

• neither zero-one nor pseudo-bulk kinetics are necessarily applicable

• rapidly changing CLD-rate coefficients make using (or obtaining) 
values for <kt> inappropriate

Experimental Comparison

• at low conversions, short-short termination dominates, so lifetime of 
radicals in two-radical particles is reduced

• as conversion increases, the dormant chain length increases and 
particles may support more than one radical, giving an acceleration 
in rate

• amphipathic, oligomeric RAFT agent (AA)x−(BA)y−S−C(Z)=S shown 
to be good for styrene by Ferguson et al. [5] behaves like longer 
dormant chain (5 to 10 units long)

Xd = 
 x[M]0 

[RAFT] 

A

B

C

Long Dormant Chains
• radical moves from short chain to long chain by 

transfer to dormant species

• either long-long termination or transfer back to the 
short dormant chain is required for termination

Short Dormant Chains
• radical length changes slowly (more slowly than in 

the absence of RAFT)

• termination is always short-short

termination

0 1

e.g. U1 = 0.8

propagation transfer to dormant

A. Effect of Dormant Chain Length (Xd)
• with short dormant chains, system is highly zero-one

all radicals are on short chains

length of radical only grows at rate 
kp[M]/([RAFT]NAVs) instead of kp[M]

radicals always on short chains

• with longer dormant chains, system is not zero-one

most radicals are on long chains

B. Effect of [RAFT]
• no direct effect for high-activity and low-activity RAFT agents

high-activity RAFT agent will always cause transfer
regardless of [RAFT]

low-activity RAFT agent (e.g. xanthates) will never
cause transfer before termination takes place,
regardless of [RAFT]

• indirect effect for high-activity RAFT agents:

higher [RAFT] makes short chains last longer 
into reaction: 

C. Length of Terminating Chains
• length of chains involved in termination reaction gives

idea of influence of short-long and long-long reactions

• entry brings in short chain (with all other chains being long);
chain transfer occurs rapidly, leaving a short dormant chain

• for rs = 50 nm, Xd = 100, [RAFT] = 8.5 mM:

28% of termination reactions short-long

only 0.037% of dormant chain population is short

lots of polymer made (see Fig. A above) so not just entering species that is terminating

• transfer back to the short dormant species is an important pathway leading to termination
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SymbolsSystem Details
• styrene, 50 oC, S2O8

2– initiator, rs = 50 nm, 
[RAFT] = 3 – 20 mM, diffusion model from [3,4]

• high-activity, benzyl-activated RAFT agent

CLD chain length dependent k
ij
t  CLD termination rate coeff. 

Pi  propagating radical length i kp propagation rate coeff 
Dk dormant chain length k k

 
tr,D rate coeff. for Pi  + Dk 

Vs  swollen volume of particle Xd length of dormant chain 
rs swollen radius of particle x conversion 
 

τ = − 
ln(U2)

 ∆i 
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