

Ğ,

(0)

0.1

5% PVP 5% PVP - 15mM SDS 5% PVP - 30mM SDS

0.1

Q / Å⁻¹

R_g / Å 31.5

mM SDS

SDS

₭ Relaxation NMR Relaxation of near-surface water much • faster than bulk water Fast-exchange limit • Population-average measured: $R_{\text{average}} = \phi_{\text{surface}} R_{\text{surface}} + (1 - \phi_{\text{surface}}) R_{\text{bulk}}$ Adsorbed polymer increases average rate of relaxation Molecular motions restricted → correlation times longer → relaxation more efficient More molecules in near-surface layer $(\phi_{\text{surface}} \text{ increases})$

₭ Polymer adsorption 0.4 0.3 a² 0.2 0.1 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 PVP added per unit area of silica / mg m⁻²

Relaxation NMR sensitive to polymer trains but not to loops

University of BRISTOL

University of BRISTOL

K Polymer volume fraction profile: SANS

🖌 New NMR hardware

- Small, light, low power •
- Fast measurements •
- Low capital costs
- Low running costs

Measure relaxation

- R_1 and R_2 •
- surface area
- surface chemistry
- flocculation

University of SRISTOL

Ke Desorption by surfactant PVP adsorbed onto silica first, SDS added after overnight 0.3 Layer thickness / nm mixing. R 0.2 4 0.1 **I** 0.0 60 0 20 40 80 [SDS1/mM

٠ Increase in layer thickness → stretching of remaining PVP

acorn area

- $C_{13}E_7$ displaces SDS from micelles reducing repulsion
- adsorbed amount increases with addition of C₁₃E₇

University of BRISTOL

University of BRISTOL